If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2=1000
We move all terms to the left:
16t^2-(1000)=0
a = 16; b = 0; c = -1000;
Δ = b2-4ac
Δ = 02-4·16·(-1000)
Δ = 64000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{64000}=\sqrt{6400*10}=\sqrt{6400}*\sqrt{10}=80\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{10}}{2*16}=\frac{0-80\sqrt{10}}{32} =-\frac{80\sqrt{10}}{32} =-\frac{5\sqrt{10}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{10}}{2*16}=\frac{0+80\sqrt{10}}{32} =\frac{80\sqrt{10}}{32} =\frac{5\sqrt{10}}{2} $
| 4z−16=-7 | | -4(5-7x)=-356 | | |-2x-6|=17 | | 1.3+05x=-3.41 | | 3(4-6x)=30 | | -7(-7+5x)=49 | | 3(1x+7)=-12 | | -5(3-4x)=5 | | 4(2x+9=68 | | 7(5x+7)=294 | | 6x+3=-6+7x | | 3(-5x+6)=-117 | | (h+2/5)=2 | | h+2/5=2 | | -5(2x+8)=80 | | 6x+3=-3×+3 | | 6x+3=-3x+3 | | X+3=7x-39 | | 3x÷10+2x÷5=7x÷25+29÷25 | | 81x^2-9x+2=0 | | -3x+3=2x-32 | | X-3=-5+2x | | -x+4=5x-68 | | -6(2x+2)=-3x+4 | | (a+2)÷5=3 | | -x+5=x+29 | | x-22=(2x+2)+7 | | (2*10)x=4*10-7 | | -2x+24=-5x+45 | | 4(2x+2)+4=5x-15 | | 2x-5+8x-3=1-18x | | -4a+7=12 |